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Motivation
• Kennickell (2019): Even small difference in effective coverage of the upper tail of 

the wealth distribution in a survey can yield large biases in estimates of inequality 
(and even the precision on the estimates)

• Comparisons across surveys may be even worse, if there are differences in 
effective coverage

• Vermeulen [2018] introduced idea of using “rich lists” to supplement survey data, 
for purposes of estimating a Pareto  approximation of the upper tail

• A positive step, but rich lists are generally opaque in their construction and replete with 
possibilities for error

• Overstated/understated wealth, family vs. individual, actual country of residence, etc.
• Typically, approach uses only extreme observed tail in estimation
• By now, extensive application of this method

• Can we forge a principled and more flexible alternative?



A very brief nod at the literature

• By now, a large literature using Pareto methods with rich list data
• Results appear highly dependent on such opaque data

• Used in work on distributional national accounts
• But details matter(!): e.g., paper with Peter and Martin on DFA

• Much less attention to the generalized Pareto distribution (GPD)
• Recent work for Austria by Ines Heck, Jakob Kapeller and Rafael Wildauer using 

Austrian data incorporating rich list data with GPD
• Alas for me, only available now in German, so I have been unable to read it

• This paper focuses entirely on a GPD approach
• (Note: Ignoring all other sources of measurement bias besides tail bias)



Preview of results

• Survey data generally understate aggregate wealth
• Generalized Pareto, as implemented here allows possibility of:

1. Better fitting of observed data as result of additional parameter
2. Treating some data as unrepresentative
3. Explicitly addressing an unobserved right tail
4. Constraining parameter estimates to reproduce an aggregate total
5. [Directly introducing data from “rich lists” (not done here)]

• Only #4 is effective in closing the gap with aggregate data
• For Austria, yields much higher level of wealth concentration



The data

• Wealth data from 2017 HFCS for Austria and 2016 SCF for US
• Many conceptual similarities
• Principal difference for current purpose is effective coverage of the 

upper tail
• HFCN:AT lacks a means of explicitly sampling the upper tail

• 28 observations represent top 1%
• SCF uses transformation of tax data to sample the upper tail and perform 

post-survey adjustments
• 563 observations represent top 1%
• Already explains the great majority of aggregate wealth

• NOTE: For most estimates, only first implicate is used



Descriptive statistics for 2016 HFCS:AT and 2017 SCF
Item 2017 Austrian HFCS 2016 SCF
Mean 237500 689200

11200 18400 7100 12700
Median 74800 97300

1180 4040 422 2700
Share top 1% 22.9 38.6

3.01 4.65 0.16 0.68
Gini coefficient 0.723 0.850

0.011 0.019 0.001 0.003
P90-P25 ratio 44.9 116.8

0.66 2.37 1.75 4.86
Number of observations 3072 6248
"Population mean" 332692 708536

Mean and median figures are given in home currency in each case: 2 Jan 2017 exchange rate 1 Euro = 1.05 USD.

Str error wrt IMPUTATION
Std error wrt IMPUTATION AND SAMPLING
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Estimation approach here

• Use generalized Pareto distribution (GPD): ASSUMPTION!
• Flexibility of additional parameter beyond simple Pareto offers hope of 

integrating better with more than just the extreme tail

• Reinterpretation of Castillo and Hadi [1997] estimation method to 
apply to survey data

• Extension of method to allow for
• Errors in regions of data

• (Note: Ignoring other sources of reporting error)
• Effective undercoverage at the top of the wealth distribution
• Incorporation of external aggregate as a constraint on the estimation



Generalized Pareto distribution (GPD)

𝐹𝐹 V = 𝐹𝐹 𝜆𝜆 − 𝜆𝜆0|𝜆𝜆 > 𝜆𝜆0 > 0 = 1 − 1 −
𝑘𝑘 𝜆𝜆 − 𝜆𝜆0

𝜎𝜎

1
𝑘𝑘

V: vector of wealth values
𝜆𝜆0: “location parameter”: value above which GPD taken to apply
k: “shape parameter”
σ: “scale parameter”
𝜆𝜆 − 𝜆𝜆0: vector of “exceedances”

Simple Pareto (F 𝜆𝜆 = 1 − �𝜆𝜆0
𝜆𝜆
𝛼𝛼

) is a special case of GPD 



GPD for various parameter values
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Selected GPDs with same mean
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Basic estimation method (Castillo & Hadi [1997])

• Substitute 𝛿𝛿 = ⁄𝜎𝜎 𝑘𝑘 (for k^=0): F λ − λ0 = 1 − 1 − ⁄𝜆𝜆 − 𝜆𝜆0 𝛿𝛿
1
k

• For observed (𝜆𝜆𝑖𝑖 , 𝑝𝑝𝑖𝑖 ): 𝑘𝑘 = ⁄𝑙𝑙𝑙𝑙 1 − ⁄𝜆𝜆𝑖𝑖 − 𝜆𝜆0 𝛿𝛿 𝑙𝑙𝑙𝑙 1 − 𝑝𝑝𝑖𝑖

• Take ratio for i and j:  
𝑙𝑙𝑙𝑙 1− �𝜆𝜆𝑖𝑖−𝜆𝜆0 𝛿𝛿

𝑙𝑙𝑙𝑙 1− �𝜆𝜆𝑗𝑗−𝜆𝜆0 𝛿𝛿
= 𝑙𝑙𝑙𝑙 1−𝑝𝑝𝑗𝑗

𝑙𝑙𝑛𝑛 1−𝑝𝑝𝑖𝑖

• Compute 𝛿̂𝛿 by search, and use data to compute �𝑘𝑘 and �𝜎𝜎
• (p is percentile of distribution as defined above 𝜆𝜆0)
• (See paper for other technical details)



Basic implementation

• (More on selecting λ0 later: take as given for now)
• Choose many data pairs (𝜆𝜆𝑖𝑖 , 𝜆𝜆𝑗𝑗 ) and corresponding 

(𝑝𝑝𝑖𝑖 , 𝑝𝑝𝑗𝑗 )
• In principle, could choose any set of pairs
• In this implementation, 5,100 pairs used, “stratified” to 

ensure broad distribution
• Maps out the range of k and σ compatible with the data

• In practice, a very broad range



Estimates of (k ,σ)
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Stage 1: Select “best” �𝑘𝑘 and �𝜎𝜎

• Select �𝑘𝑘, �𝜎𝜎 to minimize (modified) Anderson-Darling right-tail criterion

• 𝐴𝐴𝐴𝐴_𝑅𝑅𝑅𝑅 𝜆𝜆0,�𝑘𝑘, �𝜎𝜎 = �∑𝜆𝜆>𝜆𝜆0 𝑊𝑊 𝜆𝜆
�𝑝𝑝 𝜆𝜆−𝜆𝜆0|�𝑘𝑘,�𝜎𝜎 −𝑝𝑝 𝜆𝜆−𝜆𝜆0

1−𝑚𝑚𝑚𝑚𝑚𝑚 0.99,�𝑝𝑝 𝜆𝜆−𝜆𝜆0|�𝑘𝑘,�𝜎𝜎

2

∑𝜆𝜆>𝜆𝜆0 𝑊𝑊 𝜆𝜆

•Weighted sum of 
“Predicted percentile”−Actual percentile

100−min 99,"Predicted percentile"
2

over range above 𝜆𝜆0



Stage 2: determine whether plausibly GPD

• Use Cramer-von Mises test critical value (Choulakian and Stephens 
[2001])  to assess plausibility of result as GPD

• 𝐶𝐶𝐶𝐶𝐶𝐶 𝜆𝜆0,�𝑘𝑘, �𝜎𝜎 =∑𝜆𝜆>𝜆𝜆∗ 𝜛𝜛 𝜆𝜆 𝑝̂𝑝 𝜆𝜆 − 𝜆𝜆0|�𝑘𝑘, �𝜎𝜎 − 𝑝𝑝 𝜆𝜆 − 𝜆𝜆0
2

+ 1
12𝐸𝐸𝐸𝐸𝐸𝐸 𝜆𝜆0

• 𝜛𝜛 𝜆𝜆 =
𝑊𝑊 𝜆𝜆

∑L>𝜆𝜆0 𝑊𝑊 𝐿𝐿

∑𝐿𝐿>𝜆𝜆0 𝑊𝑊 𝐿𝐿
2

∑𝐿𝐿>𝜆𝜆0 𝑊𝑊 𝐿𝐿 2
=

𝑊𝑊 𝜆𝜆

∑L>𝜆𝜆0 𝑊𝑊 𝐿𝐿
𝐸𝐸𝐸𝐸𝐸𝐸 𝜆𝜆0

• Sum of “Predicted percentile”−Actual percentile 2, weighted over 
range above 𝜆𝜆0, with correction for the effective sample size



Wait a minute!  How select 𝛌𝛌𝟎𝟎? 

• Theory: If the data above any 𝜆𝜆0are GPD, then the distribution from 
any point 𝜆𝜆+ above 𝜆𝜆0 is also GPD with the same k and with 𝜎𝜎 given 
by:

• 𝜎𝜎 𝜆𝜆 − 𝜆𝜆+|𝜆𝜆 > 𝜆𝜆+ > 𝜆𝜆0 = 𝜎𝜎0 − 𝑘𝑘 𝜆𝜆+ − 𝜆𝜆0

• Estimation efficiency argues for selecting lowest value of 𝜆𝜆0for which 
�𝑘𝑘, �𝜎𝜎 pass CVM test

•But…



HFCS: AT: Gini coeff., share top 1%, CVM and k ̂, by 
%-ile corresponding to 𝛌𝛌𝟎𝟎
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SCF: Gini coeff., share top 1%, CVM and k ̂, by  %-ile
corresponding to 𝛌𝛌𝟎𝟎
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How select 𝛌𝛌𝟎𝟎?: An alternative

• Smooth over the region with “acceptable” estimates

• ̂𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 =
∑𝜆𝜆≥𝜆𝜆0∗

𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚
𝐸𝐸𝐸𝐸𝐸𝐸 𝜆𝜆 𝑊𝑊 𝜆𝜆 𝐶𝐶𝐶𝐶𝐶𝐶 𝜆𝜆, ̂𝑘𝑘𝜆𝜆 ,�𝜎𝜎𝜆𝜆 ≤TCVM ̂𝑘𝑘𝜆𝜆 ̂𝑘𝑘𝜆𝜆

∑𝜆𝜆≥𝜆𝜆0∗
𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚

𝐸𝐸𝐸𝐸𝐸𝐸 𝜆𝜆 𝑊𝑊 𝜆𝜆 𝐶𝐶𝐶𝐶𝐶𝐶 𝜆𝜆, ̂𝑘𝑘𝜆𝜆 ,�𝜎𝜎𝜆𝜆 ≤TCVM ̂𝑘𝑘𝜆𝜆

• But cannot do same for 𝛿𝛿 , because 𝛿𝛿 depends on λ through 𝜎𝜎
• “Standardize” 𝜎𝜎 at some 𝜆𝜆𝑠𝑠 before smoothing: 𝜎𝜎 𝜆𝜆, 𝜆𝜆𝑠𝑠 ≡ �𝜎𝜎𝜆𝜆 − �𝑘𝑘𝜆𝜆 𝜆𝜆𝑠𝑠 − 𝜆𝜆

• ̂𝛿𝛿𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 =
∑𝜆𝜆≥𝜆𝜆∗
𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚

𝐸𝐸𝐸𝐸𝐸𝐸 𝜆𝜆 𝑊𝑊 𝜆𝜆 𝐶𝐶𝐶𝐶𝐶𝐶 𝜆𝜆,𝑘̂𝑘𝜆𝜆,�𝜎𝜎𝜆𝜆 ≤TCVM 𝑘̂𝑘𝜆𝜆 ⁄𝜎𝜎 𝜆𝜆,𝜆𝜆𝑠𝑠 𝑘̂𝑘𝜆𝜆

∑𝜆𝜆≥𝜆𝜆∗
𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚

𝐸𝐸𝐸𝐸𝐸𝐸 𝜆𝜆 𝑊𝑊 𝜆𝜆 𝐶𝐶𝐶𝐶𝐶𝐶 𝜆𝜆,𝑘̂𝑘𝜆𝜆,�𝜎𝜎𝜆𝜆 ≤TCVM 𝑘̂𝑘𝜆𝜆

• �𝑘𝑘𝜆𝜆𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = ⁄�𝑘𝑘𝜆𝜆 − �𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 �𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠 and 𝛿̂𝛿𝜆𝜆
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = ⁄𝛿̂𝛿𝜆𝜆 − 𝛿̂𝛿𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝛿̂𝛿𝑠𝑠𝑠𝑠𝑠𝑠

• Choose λ and �𝑘𝑘, �𝜎𝜎 corresponding to minimum of �𝑘𝑘𝜆𝜆
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛2

+ 𝛿̂𝛿𝜆𝜆
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛2



“Top break”

• Breaks in the fit of the data
• Region below about 85 %-ile for HFCS: AT
• Region below about 95 %-ile for SCF

• Estimates considered:
• Lowest acceptable value of 𝜆𝜆0

• Smoothed estimates
• Smoothed estimates above break

• Note: (Largely) omitting confidence intervals (until end)



HFCS: AT: Basic estimates

1st plausible λ0 λ0 for kmean λ0 for kmean>break Unaltered data

%-ile of λ0 67.4 79.5 93.6 NA

�𝑘𝑘 -0.548 -0.560 -0.547 NA

Top 1% share 21.1% 21.4% 21.1% 22.9%

Gini coefficient 0.781 0.756 0.724 0.723

Mean/”Pop_mean” 73.4% 73.7% 73.4% 73.7%

N for estimates 830 527 167 3072

In this and all charts that follow, the %-ile of λ0 given is defined in terms of the original data.



SCF: Basic estimates

1st plausible λ0 λ0 for kmean λ0 for kmean>break Unaltered data

%-ile of λ0 71.4 79.9 96.6 NA

�𝑘𝑘 -0.823 -0.794 -0.523 NA

Top 1% share 57.4 53.5 38.3 38.6%

Gini coefficient 0.915 0.902 0.851 0.850

Mean/”Pop_mean” 133.4% 125.7% 94.7% 96.0%

N for estimates 2690 2247 1042 6248



Estimates

• For AT, apparently the model together with the observed data is 
insufficient to alter the results substantially

• For the SCF, the situation is more strange
• The most straightforward estimates imply highly implausible population 

results
• Estimating only over the part of the distribution above the “break area” yields 

results close to the unaltered results

• Consider two alternatives:
• Exclude some data at the top under assumption of substantial misreporting
• Formally treat top of the distribution as entirely unobserved



Exclude “bad” data?

• Some data may be measured with error, and errors in the right tail may be 
particularly damaging

• (As noted earlier, ignoring reporting error other than in right tail!)
• Because estimation method relies on pairs of data, it is straightforward to 

exclude any region of data
• Focus on top values here

• But CVM test for GPD plausibility relies on comparisons of actual/predicted 
across whole range above given λ location value

• Approximate omitted range by inflating CVM difference elsewhere
• ½ omitted distance (in percentiles) below truncation point
• ½ omitted distance (in percentiles) above location value
• (Note: CVM values tend to zero at either end)



HFCS: AT: Omit some data
Omit top 1% Omit top 2% Unaltered data

%-ile of λ0 67.5 76.1 NA

�𝑘𝑘 -0.550 -0.622 NA

Top 1% share 21.1% 25.0% 22.9%

Gini coefficient 0.781 0.778 0.723

Mean/”Pop_mean” 73.4% 77.7% 73.7%

N for estimates 799 558 3072

Reporting only estimates for kmean



SCF: Omit some data

Omit top 0.5% Omit top 1% Unaltered data

%-ile of λ0 97.3 97.6 NA

�𝑘𝑘 -0.242 -0.506 NA

Top 1% share 31.3% 39.6% 38.6%

Gini coefficient 0.833 0.853 0.850

Mean/”Pop_mean” 85.8% 95.9% 96.0%

N for estimates 387 277 6248

Reporting only estimates for kmean above break



Estimates

• For AT, omitting top 1% makes little difference over the estimate using 
all data

• Omitting top 2% increases measures of concentration, but fraction of 
aggregate still far below 1

• For SCF, omitting top ½ percent lowers both top share and the mean
• Omitting entire top 1% raises top share, and leaves implied aggregate nearly 

same

• Appears to be not a useful alternative on its own 



Possibly unmeasured top of distribution?

• Very likely that 100th %-ile in survey is not population 100th %-ile
• Similarly likely for some range below that

• For example, if top 1% is not observed, then:
• Observed 100th %-ile is true 99th %ile, observed 50th %-ile is true 49.5th %-ile

• Let 𝜆𝜆0∗ be GPD location parameter (𝜫𝜫 𝝀𝝀𝟎𝟎∗ %-ile of observed data) 
and let 𝜌𝜌 be the percent unobserved

• Then adjust observed 𝑝𝑝𝑖𝑖 in parameter estimates by 
100−Π 𝜆𝜆0∗ /100

⁄100−Π 𝜆𝜆0∗ +𝜌𝜌 100
• (Also need to make same CVM approximation as in previous case)

• (A little more later on a path toward specifying 𝜌𝜌)



HFCS: AT: Unobserved region

Missing top 0.1% Missing top 0.5% Unaltered data

%-ile of λ0 73.0 70.6 NA

�𝑘𝑘 -0.575 -0.628 NA

Top 1% share 22.2% 25.8% 22.9%

Gini coefficient 0.774 0.785 0.723

Mean/”Pop_mean” 74.8% 81.0% 73.7%

N for estimates 678 749 3072

Reporting only estimates for kmean



SCF: Unobserved region

Missing top 0.1% Missing top 0.5% Unaltered data

%-ile of λ0 96.7 96.6 NA

�𝑘𝑘 -0.543 -0.544 NA

Top 1% share 39.5% 39.0% 38.6%

Gini coefficient 0.852 0.858 0.850

Mean/”Pop_mean” 95.1% 110.3% 96.0%

N for estimates 1030 1042 6248

Reporting only estimates for kmean above break



Estimates

• Fraction of implied aggregate mean explained by survey mean 
appears to increase with size of area of distribution omitted

• But no guarantee that result is monotonic or that 100% is obtainable

• Next alternative is more direct 



Impose an external constraint?
• A key property of GPD:

• 𝐸𝐸 𝜆𝜆 − 𝜆𝜆0|𝜆𝜆 > 𝜆𝜆0 > 0 = 𝜎𝜎
1+𝑘𝑘

, if 𝑘𝑘 > −1
• Given an external total estimate 𝐴𝐴0, define the mean value above 

some 𝜆𝜆𝑖𝑖 (location parameter for GPD estimate) as follows:

• ⁄𝐴𝐴𝜆𝜆𝑖𝑖 𝑁𝑁𝜆𝜆𝑖𝑖 ≡ 𝜇𝜇𝜆𝜆𝑖𝑖 = �𝐴𝐴0 −∑𝜆𝜆<𝜆𝜆𝑖𝑖 𝑊𝑊 𝜆𝜆 𝜆𝜆 𝑁𝑁𝜆𝜆𝑖𝑖
• Use earlier search technique to solve for 𝛿̂𝛿

• Then ̂𝑘𝑘 =
𝜇𝜇𝜆𝜆𝑖𝑖−𝜆𝜆𝑖𝑖

𝛿̂𝛿− 𝜇𝜇𝜆𝜆𝑖𝑖−𝜆𝜆𝑖𝑖
and �𝜎𝜎 = 𝜇𝜇𝜆𝜆𝑖𝑖 − 𝜆𝜆𝑖𝑖 1 + �𝑘𝑘

• (External estimate may be questionable, but unlike “rich list” data it 
(usually) results from a transparent process)



HFCS:AT: Constrained

Constraint: Survey 
total

External 
aggregate

External 
aggregate Unaltered data

Unobserved: 0% 0% 0.2% NA

%-ile of λ0 68.8 97.9 83.3 NA

�𝑘𝑘 -0.558 -0.902 -0.806 NA

Top 1% share 21.4% 41.7% 41.2% 22.9%

Gini coefficient 0.782 0.793 0.817 0.723

Mean/”Pop_mean” 73.7% 100% 100% 73.7%

N for estimates 815 56 429 3072
Reporting only estimates for kmean



SCF: Constrained

Constraint: Survey 
total

External 
aggregate

External 
aggregate

Unaltered 
data

Unobserved: 0% 0% 0.01% NA

%-ile of λ0 96.4 96.4 96.5 NA

�𝑘𝑘 0.535 -0.535 0.532 NA

Top 1% share 38.7% 38.8 38.7 38.6%

Gini coefficient 0.852 0.852 0.852 0.850

Mean/”Pop_mean” 96.0% 100% 100% 96.0%

N for estimates 1067 1067 1055 6248
Reporting only estimates for kmean above break (same as for basic kmean here)



Estimates

• For HFCS: AT and SCF, using a measure of aggregate wealth
• At this stage, not critical to question its precise reliability

• (Beyond my competence in any case!_

• Constraining the total to equal the observed total reasonably approximates 
direct estimates from the data

• Bit better for the SCF
• Constraining the total to equal the aggregate yields:

• Dramatic increase in top share for HFCS:AT
• Little change (as expected) for the SCF

• But sample size for HFCS:AT very small
• Possible to do better?



Combine with missing mass approach?
• By sample definition, SCF is missing at least the Forbes 400 wealthiest
• Austrian data do not contain cases present in rich lists, due either to their 

not being sampled or their decision not to participate
• Therefore, prima facie case for treating at least some mass as missing

• Need some criterion for selecting a value of missing mass
• Up to a point, when applying the aggregate constraint, increasing fraction 

of assumed missing mass appears to yield increasing or nearly flat sample 
size used in estimation

• Beyond that point, sample size declines notably
• Searched over relatively fine gradations to find a maximal sample size for 

each survey



HFCS:AT: Constrained + missing mass

Constraint: Survey 
total

External 
aggregate

External 
aggregate Unaltered data

Unobserved: 0% 0% 0.2% NA

%-ile of λ0 68.8 97.9 83.3 NA

�𝑘𝑘 -0.558 -0.902 -0.806 NA

Top 1% share 21.4% 41.7% 41.2% 22.9%

Gini coefficient 0.782 0.793 0.817 0.723

Mean/”Pop_mean” 73.7% 100% 100% 73.7%

N for estimates 815 56 429 3072
Reporting only estimates for kmean



SCF: Constrained + missing mass

Constraint: Survey 
total

External 
aggregate

External 
aggregate Unaltered data

Unobserved: 0% 0% 0.01% NA

%-ile of λ0 96.4 96.4 96.5 NA

�𝑘𝑘 0.535 -0.535 0.532 NA

Top 1% share 38.7% 38.8 38.7 38.6%

Gini coefficient 0.852 0.852 0.852 0.850

Mean/”Pop_mean” 96.0% 100% 100% 96.0%

N for estimates 1067 1067 1055 6248
Reporting only estimates for kmean above break (same as for basic kmean here)



Estimates

• For HFCS AT, top share unchanged (Gini somewhat higher), but 
sample size used for estimation greatly increased if top 2/10th percent 
treated as unobserved

• For SCF, little difference in estimates, but sample size declines notably 
beyond region of 1/100th percent treated as unobserved



Top share: StdErr wrt imputation and sampling

• (Note: Earlier estimates for last two columns used only 1st implicate)

• No improvement for SCF: probably reflects high sampling rate at top
• Large improvement for HFCS:AT: much thiner sampling at top

Raw data Basic 
Estimate

Constrainted + 
missing mass

HFCS: AT 22.9 19.8 41.1
(4.65) (3.27) (1.94)

SCF 38.6 38.5 38.7
(0.68) (1.51) (0.69)



Conclusions

• SCF provides a reasonably workable measure of the wealth distribution 
even without adjustment

• For HFCS:AT, GPD unaided is not “magic” enough to conjure estimates that 
align with wealth aggregate

• Even with tweaks to address bad reporting in the upper tail, or allow for omission of 
the extreme upper tail

• Assuming(!) reality is GPD, observed curvature is too thin and contains too little 
information about the upper tail

• Constraining the estimates to reproduce the aggregate, especially when combined 
with an allowance for effective under coverage at the top may be helpful

• Research with other data and further technical development are needed



What we hope we are NOT doing!



Thanks for your attention!
Questions/Comments?

Arthur.Kennickell@gmail.com
Paper available at:

stonecenter.gc.cuny.edu/research/chasing-the-tail-a-generalized-
pareto-distribution-approach-to-estimating-wealth-inequality/
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